If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2-18a-400=0
a = 4; b = -18; c = -400;
Δ = b2-4ac
Δ = -182-4·4·(-400)
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6724}=82$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-82}{2*4}=\frac{-64}{8} =-8 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+82}{2*4}=\frac{100}{8} =12+1/2 $
| 45=5/k | | 232-28x=-272-20x | | -2b+2=-14 | | (x+4)(7)=5(x-2) | | 2x-5=-1-(5x-2) | | 4x+5=x^2+5x-1 | | 7x-2=12+x+8x | | P-3+p=6-p+9 | | 3−12r=5−23r | | -5y-8=2-10y | | 12-4/5x+12=4 | | N-20=20+3n-2 | | -3(-8v+6)-6v=3(v-8)-4 | | 100=18e | | 4r-24=6(r-4) | | -3.5(10x-2)=-176.25 | | 14-4x=-17 | | -4x+14=-17 | | 2x^2+x+2=5 | | 5(x-4)-8x=4 | | 20+r+20=-20-9r | | (5x-1)/8=3 | | 1.5(b+2)=2b-9=15 | | -15-2x=x+3-6x | | 7(x-5)=-32+8x | | (6y+1)=(6y+1) | | 8=24-15n | | m+165=310 | | -7x-3x+2=1-x | | 8(5-7b)=-21+5b | | 70-10x=-10x+40 | | y+14=105 |